Facile Fabrication of a Gold Nanocluster-Based Membrane for the Detection of Hydrogen Peroxide
In this work, we present a simple and rapid method to synthesize red luminescent gold nanoclusters (AuNCs) with high quantum yield (QY, ~16%), excellent photostability and biocompatibility. Next, we fabricated a solid membrane by loading the as-prepared AuNCs in an agar matrix. Different from nanoma...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2016-07, Vol.16 (7), p.1124 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we present a simple and rapid method to synthesize red luminescent gold nanoclusters (AuNCs) with high quantum yield (QY, ~16%), excellent photostability and biocompatibility. Next, we fabricated a solid membrane by loading the as-prepared AuNCs in an agar matrix. Different from nanomaterials dispersed in solution, the AuNCs-based solid membrane has distinct advantages including convenience of transportation, while still maintaining strong red luminescence, and relatively long duration storage without aggregation. Taking hydrogen peroxide (H₂O₂) as a typical example, we then employed the AuNCs as a luminescent probe and investigated their sensing performance, either in solution phase or on a solid substrate. The detection of H₂O₂ could be achieved in wide concentration ranges over 805 nM-1.61 mM and 161 μM-19.32 mM in solution and on a solid membrane, respectively, with limits of detection (LOD) of 80 nM and 20 μM. Moreover, the AuNCs-based membrane could also be used for visual detection of H₂O₂ in the range of 0-3.22 mM. In view of the convenient synthesis route and attractive luminescent properties, the AuNCs-based membrane presented in this work is quite promising for applications such as optical sensing, fluorescent imaging, and photovoltaics. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s16071124 |