Notes on Hong's conjecture on nonsingularity of power LCM matrices
Let $ a, n $ be positive integers and $ S = \{x_1, ..., x_n\} $ be a set of $ n $ distinct positive integers. The set $ S $ is said to be gcd (resp. lcm) closed if $ \gcd(x_i, x_j)\in S $ (resp. $ [x_i, x_j]\in S $) for all integers $ i, j $ with $ 1\le i, j\le n $. We denote by $ (S^a) $ (resp. $ [...
Gespeichert in:
Veröffentlicht in: | AIMS mathematics 2022-01, Vol.7 (6), p.10276-10285 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $ a, n $ be positive integers and $ S = \{x_1, ..., x_n\} $ be a set of $ n $ distinct positive integers. The set $ S $ is said to be gcd (resp. lcm) closed if $ \gcd(x_i, x_j)\in S $ (resp. $ [x_i, x_j]\in S $) for all integers $ i, j $ with $ 1\le i, j\le n $. We denote by $ (S^a) $ (resp. $ [S^a] $) the $ n\times n $ matrix having the $ a $th power of the greatest common divisor (resp. the least common multiple) of $ x_i $ and $ x_j $ as its $ (i, j) $-entry. In this paper, we mainly show that for any positive integer $ a $ with $ a\ge 2 $, the power LCM matrix $ [S^a] $ defined on a certain class of gcd-closed (resp. lcm-closed) sets $ S $ is nonsingular. This provides evidences to a conjecture raised by Shaofang Hong in 2002. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2022572 |