Dirac Equation on the Torus and Rationally Extended Trigonometric Potentials within Supersymmetric QM
The exact solutions of the (2+1)-dimensional Dirac equation on the torus and the new extension and generalization of the trigonometric Pöschl-Teller potential families in terms of the torus parameters are obtained. Supersymmetric quantum mechanics techniques are used to get the extended potentials w...
Gespeichert in:
Veröffentlicht in: | Advances in High Energy Physics 2018-01, Vol.2018 (2018), p.1-9 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The exact solutions of the (2+1)-dimensional Dirac equation on the torus and the new extension and generalization of the trigonometric Pöschl-Teller potential families in terms of the torus parameters are obtained. Supersymmetric quantum mechanics techniques are used to get the extended potentials when the inner and outer radii of the torus are both equal and inequal. In addition, using the aspects of the Lie algebraic approaches, the iso(2,1) algebra is also applied to the system where we have arrived at the spectrum solutions of the extended potentials using the Casimir operator that matches with the results of the exact solutions. |
---|---|
ISSN: | 1687-7357 1687-7365 |
DOI: | 10.1155/2018/6891402 |