Autonomous self-healing supramolecular polymer transistors for skin electronics
Skin-like field-effect transistors are key elements of bio-integrated devices for future user-interactive electronic-skin applications. Despite recent rapid developments in skin-like stretchable transistors, imparting self-healing ability while maintaining necessary electrical performance to these t...
Gespeichert in:
Veröffentlicht in: | Nature communications 2024-04, Vol.15 (1), p.3433-3433, Article 3433 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Skin-like field-effect transistors are key elements of bio-integrated devices for future user-interactive electronic-skin applications. Despite recent rapid developments in skin-like stretchable transistors, imparting self-healing ability while maintaining necessary electrical performance to these transistors remains a challenge. Herein, we describe a stretchable polymer transistor capable of autonomous self-healing. The active material consists of a blend of an electrically insulating supramolecular polymer with either semiconducting polymers or vapor-deposited metal nanoclusters. A key feature is to employ the same supramolecular self-healing polymer matrix for all active layers, i.e., conductor/semiconductor/dielectric layers, in the skin-like transistor. This provides adhesion and intimate contact between layers, which facilitates effective charge injection and transport under strain after self-healing. Finally, we fabricate skin-like self-healing circuits, including NAND and NOR gates and inverters, both of which are critical components of arithmetic logic units. This work greatly advances practical self-healing skin electronics.
Integrating self-healing capabilities into skin-like stretchable transistors presents a persistent challenge. Here, by using a supramolecular polymer matrix, the authors develop autonomous self-healing transistors and skin-like logic circuits. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-47718-2 |