2D-DOA Estimation in Switching UCA Using Deep Learning-Based Covariance Matrix Completion
In this paper, we study the two-dimensional direction of arrival (2D-DOA) estimation problem in a switching uniform circular array (SUCA), which means performing 2D-DOA estimation with a reduction in the number of radio frequency (RF) chains. We propose a covariance matrix completion algorithm for 2...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2022-05, Vol.22 (10), p.3754 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the two-dimensional direction of arrival (2D-DOA) estimation problem in a switching uniform circular array (SUCA), which means performing 2D-DOA estimation with a reduction in the number of radio frequency (RF) chains. We propose a covariance matrix completion algorithm for 2D-DOA estimation in a SUCA. The proposed algorithm estimates the complete covariance matrix of a fully sampled UCA (FUCA) from the sample covariance matrix of the SUCA through a neural network. Afterwards, the MUSIC algorithm is performed for 2D-DOA estimation with the completed covariance matrix. We conduct Monte Carlo simulations to evaluate the performance of the proposed algorithm in various scenarios; the performance of 2D-DOA estimation in the SUCA gradually approaches that in the FUCA as the SNR or the number of snapshots increases, which means that the advantages of a FUCA can be preserved with fewer RF chains. In addition, the proposed algorithm is able to implement underdetermined 2D-DOA estimation. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22103754 |