Detection and Characterization of Single Cisplatin Adducts on DNA by Nanopore Sequencing

Detection and characterization of an individual cisplatin adduct on a single DNA molecule is a demanding task. We explore the characteristic features of cisplatin adducts in the nanopore sequencing signal in aspects of dwell time, genome anchored current trace, and basecalling accuracy. The offset b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2021-07, Vol.6 (26), p.17027-17034
Hauptverfasser: Zhao, Xinjia, Liu, Yuru, Chen, Xiaoyu, Mi, Zhuang, Li, Wei, Wang, Pengye, Shan, Xinyan, Lu, Xinghua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detection and characterization of an individual cisplatin adduct on a single DNA molecule is a demanding task. We explore the characteristic features of cisplatin adducts in the nanopore sequencing signal in aspects of dwell time, genome anchored current trace, and basecalling accuracy. The offset between the motor protein and the nanopore constriction region is revealed by dwell time analysis to be about 14 bases in the nanopore device as we examined. Characteristic distortions due to cisplatin adducts are illustrated in genome anchored current trace analysis, constituting the fingerprint for identification of cisplatin adduct. The sharp increase in odds ratio at the location of adducting sites provides additional feature in the detection of the adduct. By these combined methods, single cisplatin adducts can be detected with high fidelity on a single read of the DNA sequence. The study demonstrates an effective method in the detection and characterization of single cisplatin adducts on DNA at the single-molecule level and with single nucleotide spatial resolution.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.1c02106