Importance of the renal ion channel TRPM6 in the circadian secretion of renin to raise blood pressure

Blood pressure has a daily pattern, with higher values in the active period. Its elevation at the onset of the active period substantially increases the risk of fatal cardiovascular events. Renin secretion stimulated by renal sympathetic neurons is considered essential to this process; however, its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-06, Vol.12 (1), p.3683-3683, Article 3683
Hauptverfasser: Funato, Yosuke, Yamazaki, Daisuke, Okuzaki, Daisuke, Yamamoto, Nobuhiko, Miki, Hiroaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Blood pressure has a daily pattern, with higher values in the active period. Its elevation at the onset of the active period substantially increases the risk of fatal cardiovascular events. Renin secretion stimulated by renal sympathetic neurons is considered essential to this process; however, its regulatory mechanism remains largely unknown. Here, we show the importance of transient receptor potential melastatin-related 6 (TRPM6), a Mg 2+ -permeable cation channel, in augmenting renin secretion in the active period. TRPM6 expression is significantly reduced in the distal convoluted tubule of hypotensive Cnnm2 -deficient mice. We generate kidney-specific Trpm6 -deficient mice and observe a decrease in blood pressure and a disappearance of its circadian variation. Consistently, renin secretion is not augmented in the active period. Furthermore, renin secretion after pharmacological activation of β-adrenoreceptor, the target of neuronal stimulation, is abrogated, and the receptor expression is decreased in renin-secreting cells. These results indicate crucial roles of TRPM6 in the circadian regulation of blood pressure. Circadian variation of blood pressure, with higher values in the active period, is associated with the risk of fatal cardiovascular events. Here, we show the importance of renal TRPM6, a Magnesium-permeable cation channel, in raising blood pressure by stimulating renin secretion.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-24063-2