Geometric Characterization of the Mateur Plain in Northern Tunisia Using Vertical Electrical Sounding and Remote Sensing Techniques

The Mateur aquifer system in Northern Tunisia was examined using data from 19 water boreholes, 69 vertical electrical sounding (VES) stations, and a Sentinel-2 satellite image. Available boreholes and their corresponding logs were compared to define precisely the multi-layer aquifer system, includin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISPRS international journal of geo-information 2024-09, Vol.13 (9), p.333
Hauptverfasser: Issaoui, Wissal, Nasr, Imen, Alexakis, Dimitrios, Bejaoui, Wafa, Ibraheem, Ismael, Ezzine, Ahmed, Ben Othman, Dhouha, Inoubli, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Mateur aquifer system in Northern Tunisia was examined using data from 19 water boreholes, 69 vertical electrical sounding (VES) stations, and a Sentinel-2 satellite image. Available boreholes and their corresponding logs were compared to define precisely the multi-layer aquifer system, including the Quaternary and Campanian aquifers of the Mateur plain. Quantitative interpretation and qualitative evaluation of VES data were conducted to define the geometry of these reservoirs. These interpretations were enhanced by remote sensing imagery processing, which enabled the identification of the Mateur plain’s superficial lineaments. Based on well log information, the lithological columns show that the Quaternary series in the Ras El Ain region contains a layer of clayey, pebbly, and gravelly limestone. Additionally, in the Oued El Tine area, a clayey lithological unit has been identified as a multi-layer aquifer. The study area, exhibiting apparent resistivity values ranging between 20 and 170 Ohm·m, appears to be rich in groundwater resources. The correlation between the lithological columns and the interpreted VES data, presented as geoelectrical cross-sections, revealed variations in depth (8–106 m), thickness (10 to 55 m), and resistivity (20–98 Ohm·m) of a coarse unit corresponding to the Mateur aquifer. Twenty-three superficial lineaments were extracted from the Sentinel-2 image. Their common superposition indicated that both of them are in a good coincidence; these could be the result of normal faults, creating an aquifer system divided into raised and sunken blocks.
ISSN:2220-9964
2220-9964
DOI:10.3390/ijgi13090333