Sewage Sludge Hydrochar: An Option for Removal of Methylene Blue from Wastewater

Municipal sewage sludge was subjected to a hydrothermal carbonization (HTC) process for developing a hydrochar with high adsorption capacity for water remediation in terms of dye removal. Three hydrochars were produced from municipal sewage sludge by performing HTC at 190, 220 and 250 °C, with a 3 h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-05, Vol.10 (10), p.3445
Hauptverfasser: Ferrentino, Roberta, Ceccato, Riccardo, Marchetti, Valentina, Andreottola, Gianni, Fiori, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Municipal sewage sludge was subjected to a hydrothermal carbonization (HTC) process for developing a hydrochar with high adsorption capacity for water remediation in terms of dye removal. Three hydrochars were produced from municipal sewage sludge by performing HTC at 190, 220 and 250 °C, with a 3 h reaction time. Moreover, a portion of each hydrochar was subjected to a post-treatment with KOH in order to increase the adsorption capacity. Physicochemical properties of sludge samples, raw hydrochars and KOH-modified hydrochars were measured and batch adsorption studies were performed using methylene blue (MB) as a reference dye. Data revealed that both raw and modified hydrochars reached good MB removal efficiency for solutions with low MB concentrations; on the contrary, MB in high concentration solutions was efficiently removed only by modified hydrochars. Interestingly, the KOH treatment greatly improved the MB adsorption rate; the modified hydrochars were capable of capturing above 95% of the initial MB amount in less than 15 min. The physicochemical characterization indicates that alkali modification caused a change in the hydrochar surface making it more chemically homogeneous, which is particularly evident for the 250 °C hydrochar. Thus, the adsorption process can be regarded as a complex result of various phenomena, including physi- and chemi-sorption, acid–base and redox equilibria.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10103445