alpha$-Differentiable functions in complex plane

In this paper, the conformable fractional derivative of order $\alpha$ is defined in complex plane. Regarding to multi-valued function $z^{1-\alpha}$, we obtain fractional Cauchy–Riemann equations which in case of $\alpha=1$ give classical Cauchy–Riemann equations. The properties relating to complex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vestnik Samarskogo gosudarstvennogo tehničeskogo universiteta. Seriâ Fiziko-matematičeskie nauki 2020-07, Vol.24 (2), p.379-389
Hauptverfasser: Ronak Pashaei, Amir Pishkoo, Mohammad Sadegh Asgari, Davood Ebrahimi Bagha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the conformable fractional derivative of order $\alpha$ is defined in complex plane. Regarding to multi-valued function $z^{1-\alpha}$, we obtain fractional Cauchy–Riemann equations which in case of $\alpha=1$ give classical Cauchy–Riemann equations. The properties relating to complex conformable fractional derivative of certain functions in complex plane have been considered. Then, we discuss about two complex conformable differential equations and solutions with their Riemann surfaces. For some values of order of derivative, $\alpha$, we compare their plots.
ISSN:1991-8615
2310-7081
DOI:10.14498/vsgtu1734