Inter hospital external validation of interpretable machine learning based triage score for the emergency department using common data model

Emergency departments (ED) are complex, triage is a main task in the ED to prioritize patient with limited medical resources who need them most. Machine learning (ML) based ED triage tool, Score for Emergency Risk Prediction (SERP), was previously developed using an interpretable ML framework with s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-03, Vol.14 (1), p.6666-6666, Article 6666
Hauptverfasser: Yu, Jae Yong, Kim, Doyeop, Yoon, Sunyoung, Kim, Taerim, Heo, SeJin, Chang, Hansol, Han, Gab Soo, Jeong, Kyung Won, Park, Rae Woong, Gwon, Jun Myung, Xie, Feng, Ong, Marcus Eng Hock, Ng, Yih Yng, Joo, Hyung Joon, Cha, Won Chul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Emergency departments (ED) are complex, triage is a main task in the ED to prioritize patient with limited medical resources who need them most. Machine learning (ML) based ED triage tool, Score for Emergency Risk Prediction (SERP), was previously developed using an interpretable ML framework with single center. We aimed to develop SERP with 3 Korean multicenter cohorts based on common data model (CDM) without data sharing and compare performance with inter-hospital validation design. This retrospective cohort study included all adult emergency visit patients of 3 hospitals in Korea from 2016 to 2017. We adopted CDM for the standardized multicenter research. The outcome of interest was 2-day mortality after the patients’ ED visit. We developed each hospital SERP using interpretable ML framework and validated inter-hospital wisely. We accessed the performance of each hospital’s score based on some metrics considering data imbalance strategy. The study population for each hospital included 87,670, 83,363 and 54,423 ED visits from 2016 to 2017. The 2-day mortality rate were 0.51%, 0.56% and 0.65%. Validation results showed accurate for inter hospital validation which has at least AUROC of 0.899 (0.858–0.940). We developed multicenter based Interpretable ML model using CDM for 2-day mortality prediction and executed Inter-hospital external validation which showed enough high accuracy.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-54364-7