Reservoir damage mechanism and “Double protection” drilling fluid of tight sandstone gas reservoir in central SiChuan Basin

It is very important to clarify the reservoir damage characteristics and damage characteristics and damage mechanism of tight sandstone gas reservoirs in Jinhua-Zhongtai mountain area of central SiChuan Basin, and put forward the technical countermeasures of “Double protection” drilling fluid to pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-05, Vol.14 (1), p.12488-13, Article 12488
Hauptverfasser: Fan, Yu, Huang, Weian, Guo, Jianhua, Bai, Ruiyv, Jiang, Lin, Wang, Zengbao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is very important to clarify the reservoir damage characteristics and damage characteristics and damage mechanism of tight sandstone gas reservoirs in Jinhua-Zhongtai mountain area of central SiChuan Basin, and put forward the technical countermeasures of “Double protection” drilling fluid to protect the reservoir and the environment, which is very important for the efficient well construction in this area. Through X-ray diffraction, scanning electron microscopy, casting thin sections and other testing methods, the mineral composition and microstructure characteristics of the block were analyzed, and the potential damage factors of the reservoir were clarified. Based on the sensitivity evaluation, it was revealed that the overall sensitivity damage of the block was weak. The main damage type was salt-sensitive damage, and the critical salinity was 9472.5 mg/L. On the basis of the environmental protection drilling fluid system used in this block, the surfactant which can effectively prevent gas invasion and reduce surface tension is selected, and the “Double protection” drilling fluid system is constructed. Through comprehensive performance test and reservoir protection performance evaluation, the core permeability damage rate of the optimized drilling fluid system is reduced from 88.77 to 18.66%, and the cuttings recovery rate is increased to more than 66%, and the cuttings expansion rate is reduced to less than 3.2%, which can effectively solve the problem of reservoir damage in drilling in Jinhua-Zhongtai mountain block in central Sichuan.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-62696-7