Prime ideal graphs of commutative rings

Let R be a finite commutative ring with identity and P be a prime ideal of R. The vertex set is R - {0} and two distinct vertices are adjacent if their product in P. This graph is called the prime ideal graph of R and denoted by ΓP. The relationship among prime ideal, zero-divisor, nilpotent and uni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indonesian journal of combinatorics 2022-06, Vol.6 (1), p.42-49
Hauptverfasser: Salih, Haval Mohammed, Jund, Asaad A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be a finite commutative ring with identity and P be a prime ideal of R. The vertex set is R - {0} and two distinct vertices are adjacent if their product in P. This graph is called the prime ideal graph of R and denoted by ΓP. The relationship among prime ideal, zero-divisor, nilpotent and unit graphs are studied. Also, we show that ΓP is simple connected graph with diameter less than or equal to two and both the clique number and the chromatic number of the graph are equal. Furthermore, it has girth 3 if it contains a cycle. In addition, we compute the number of edges of this graph and investigate some properties of ΓP.
ISSN:2541-2205
2541-2205
DOI:10.19184/ijc.2022.6.1.2