Structural, microstructural and Mössbauer studies of nanocrystalline Fe100-x Alx powders elaborated by mechanical alloying

Nanocrystalline Fe100-xAlx powders (x= 25, 30, 34 and 40 at %) were prepared by the mechanical alloying process using a vario-planetary high-energy ball mill for a milling time of 35 h. The formation and physical properties of the alloys were investigated as a function of Al content by means of X-ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ Web of conferences 2012, Vol.29, p.00010
Hauptverfasser: Cheikhrouhou, A., Boukherroub, N., Guittoum, A., Souami, N., Akkouche, K., Boutarfaia, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanocrystalline Fe100-xAlx powders (x= 25, 30, 34 and 40 at %) were prepared by the mechanical alloying process using a vario-planetary high-energy ball mill for a milling time of 35 h. The formation and physical properties of the alloys were investigated as a function of Al content by means of X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray and Mössbauer spectroscopy. For all Fe100-xAlx samples, the complete formation of bcc phase was observed after 35 h of milling. As Al content increases, the lattice parameter increases, whereas the grain size decreases from 106 to 12 nm. The powder particle morphology for different compositions was observed by SEM. The Mössbauer spectra were adjusted with a singlet line and a sextet containing two components. The singlet was attributed to the formation of paramagnetic A2 disordered structure rich with Al. About the sextet, the first component indicated the formation of Fe clusters/ Fe-rich phases; however, the second component is characteristic of disordered ferromagnetic phase.
ISSN:2100-014X
2100-014X
DOI:10.1051/epjconf/20122900010