Factors Influencing the Spatiotemporal Variability in the Irrigation Requirements of Winter Wheat in the North China Plain under Climate Change

The North China Plain is a major grain-producing area, but faces water scarcity, which directly threatens food security. The problem is more severe under climate change and the seasonal impact of climate change on winter wheat is different. Thus, it is of great importance to explore the spatiotempor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy (Basel) 2022-09, Vol.12 (9), p.1987
Hauptverfasser: Wang, Nan, Wu, Jiujiang, Gu, Yuhui, Jiang, Kongtao, Ma, Xiaoyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The North China Plain is a major grain-producing area, but faces water scarcity, which directly threatens food security. The problem is more severe under climate change and the seasonal impact of climate change on winter wheat is different. Thus, it is of great importance to explore the spatiotemporal characteristics of irrigation requirements (IR) and the factors influencing IR in different growth periods of winter wheat, but it has not received much attention. Therefore, we used relative contribution, partial correlation and path analyses to assess the spatiotemporal characteristics of the IR and primary factors influencing the IR of winter wheat in various growing stages in the North China Plain. The results indicated that wind speed and net solar radiation showed a significant downward trend; no prominent trend was noted in IR (multiyear average, 302.3 mm). Throughout the growing season of winter wheat, IR increased gradually from the southern to northern extent of the North China Plain. The irrigation demand of winter wheat in stage P2 (green-up to heading) was the largest. Furthermore, the dominant drivers of IR in terms of spatial distribution and inter-annual variation were phenological period (Phe), effective precipitation (Pe) and relative humidity (RH); however, the degree of their effects varied across the growth stages and growing regions of winter wheat. Each factor exerted both direct and indirect effects on IR and Phe exhibited the strongest indirect effect on IR. The major factors contributing most to IR were Pe and RH in the P1 stage (sowing to green-up) and Phe, Pe and RH in the P2 and P3 (heading to maturity) stages. Pe and RH limited IR, whereas Phe promoted it. Our findings will help improve agricultural water management in the future.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy12091987