Implicit unscented particle filter based indoor fusion positioning algorithms for sensor networks

Combining inertial navigation system (INS) and ultra-wideband (UWB) technologies can effectively compensate for their respective shortcomings, thus significantly enhancing the accuracy of indoor positioning systems. However, in the process of fusing these two technologies, signal fading under non-li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alexandria engineering journal 2024-05, Vol.94, p.104-119
Hauptverfasser: Cheng, Long, Zhao, Zhijian, Shi, Yuanyuan, Lu, You
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Combining inertial navigation system (INS) and ultra-wideband (UWB) technologies can effectively compensate for their respective shortcomings, thus significantly enhancing the accuracy of indoor positioning systems. However, in the process of fusing these two technologies, signal fading under non-line-of-sight (NLOS) conditions, multipath effects, and errors accumulated by the INS over a long period of time are still key issues that need to be addressed. To cope with these challenges, a new fusion localization algorithm is proposed in this study. The algorithm employs a combination of fuzzy C-mean (FCM) and K-Medoids algorithms for UWB for position computation on the one hand, and an Implicit Unscented Particle Filter (IUPF)-enhanced INS for navigation information processing on the other. In addition, based on the INS error equation, this algorithm realizes the effective fusion of UWB and INS positioning information through the Minimum Error Entropy Extended Kalman Filter (MEE-EKF) technique. This integrated approach significantly improves the accuracy and stability when dealing with the localization problem in complex indoor environments. After simulation experiments under different noise conditions and real environment experiments, the algorithm proposed in this study shows significant advantages in terms of localization performance over the traditional UWB/INS localization methods in recent years. In real experiments, the algorithm achieves an average of 36.15% improvement in positioning accuracy.
ISSN:1110-0168
DOI:10.1016/j.aej.2024.03.039