Inverse Design of Tapers by Bio-Inspired Algorithms

Abstract The efficiency of optical power transferred between two bidimensional waveguides, continuous waveguide and periodic subwavelength waveguide has been designed and optimized by using a taper composed by variable length segments (0.03 − 0.27 µm). Waveguides with variable width (270 − 330 nm) h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Microwaves, Optoelectronics and Electromagnetic Applications Optoelectronics and Electromagnetic Applications, 2020-03, Vol.19 (1), p.39-49
Hauptverfasser: Sisnando, Anderson Dourado, Esquerre, Vitaly Félix Rodriguez, Vieira, Luana da França, Rubio-Mercedes, C. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The efficiency of optical power transferred between two bidimensional waveguides, continuous waveguide and periodic subwavelength waveguide has been designed and optimized by using a taper composed by variable length segments (0.03 − 0.27 µm). Waveguides with variable width (270 − 330 nm) have been considered and the number of segments on the taper region has been varied from 10 to 15. The optimized taper was efficiently designed using bio-inspired algorithms based on the genetic algorithms and the artificial immune system. The power coupled has been computed using the frequency domain finite element method. The best solution is 20% shorter than previously existent tapers with coupling light efficiency above 90% over a broadband interval of frequencies and it exhibits high fabrication error tolerances.
ISSN:2179-1074
2179-1074
DOI:10.1590/2179-10742020v19i11822