Mechanism of Early Stage Corrosion for Boric-sulfuric Acid Anodized 2A97 Al-Cu-Li Alloy Under Tropical Marine Atmosphere
Optical microscopy(OM), scanning electron microscopy(SEM), EDX and EIS combined with ultramicrotomy were employed to investigate the micro morphology, chemical composition and electrochemical properties of anodized 2A97 Al-Cu-Li alloy before and after atmospheric corrosion. The results show that whe...
Gespeichert in:
Veröffentlicht in: | Cai liao gong cheng = Journal of materials engineering 2016-09, Vol.44 (9), p.8-15 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Optical microscopy(OM), scanning electron microscopy(SEM), EDX and EIS combined with ultramicrotomy were employed to investigate the micro morphology, chemical composition and electrochemical properties of anodized 2A97 Al-Cu-Li alloy before and after atmospheric corrosion. The results show that when electrolytes containing combinations of tartaric-sulfuric or boric-sulfuric acid are used to grow the films at different temperatures, boric acid addition and higher temperature allow for higher current density that speeds up the film growth. The pore geometry and structure is similar for different electrolytes. Dispersive dark rusty spots composed of O, Al, Cl, Cu are present on the boric-sulfuric acid anodized specimen after exposure in tropical marine atmosphere for 1 month. Deposition of white corrosion product is found on the specimen surface as well. Severe pitting occurs and develops deeply into the alloy substrate after elongated outdoor exposure. Corrosion propagation is associated with [theta]-phase par |
---|---|
ISSN: | 1001-4381 1001-4381 |
DOI: | 10.11868/j.issn.1001-4381.2016.09.002 |