Band Gap Tuning in Transition Metal and Rare-Earth-Ion-Doped TiO2, CeO2, and SnO2 Nanoparticles
The energy gap Eg between the valence and conduction bands is a key characteristic of semiconductors. Semiconductors, such as TiO2, SnO2, and CeO2 have a relatively wide band gap Eg that only allows the material to absorb UV light. Using the s-d microscopic model and the Green’s function method, we...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2022-12, Vol.13 (1), p.145 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The energy gap Eg between the valence and conduction bands is a key characteristic of semiconductors. Semiconductors, such as TiO2, SnO2, and CeO2 have a relatively wide band gap Eg that only allows the material to absorb UV light. Using the s-d microscopic model and the Green’s function method, we have shown two possibilities to reduce the band-gap energy Eg—reducing the NP size and/or ion doping with transition metals (Co, Fe, Mn, and Cu) or rare earth (Sm, Tb, and Er) ions. Different strains appear that lead to changes in the exchange-interaction constants, and thus to a decrease in Eg. Moreover, the importance of the s-d interaction, which causes room-temperature ferromagnetism and band-gap energy tuning in dilute magnetic semiconductors, is shown. We tried to clarify some discrepancies in the experimental data. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano13010145 |