Sigmis: A Feature Selection Algorithm Using Correlation Based Method

Feature Selection is one of the preprocessing steps in machine learning tasks. Feature Selection is effective in reducing the dimensionality, removing irrelevant and redundant feature. In this paper, we propose a new feature selection algorithm (Sigmis) based on Correlation method for handling the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algorithms & computational technology 2012-09, Vol.6 (3), p.385-394
Hauptverfasser: Blessie, E. Chandra, Karthikeyan, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Feature Selection is one of the preprocessing steps in machine learning tasks. Feature Selection is effective in reducing the dimensionality, removing irrelevant and redundant feature. In this paper, we propose a new feature selection algorithm (Sigmis) based on Correlation method for handling the continuous features and the missing data. Empirical comparison with three existing feature selection algorithms using UCI data sets shows that the proposed system is very effective and efficient in selecting the feature set.
ISSN:1748-3018
1748-3026
DOI:10.1260/1748-3018.6.3.385