Prediction of Epilepsy Based on Tensor Decomposition and Functional Brain Network

Epilepsy is a chronic neurological disorder which can affect 65 million patients worldwide. Recently, network based analyses have been of great help in the investigation of seizures. Now graph theory is commonly applied to analyze functional brain networks, but functional brain networks are dynamic....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain sciences 2021-08, Vol.11 (8), p.1066
Hauptverfasser: Li, Han, Zhang, Qizhong, Lin, Ziying, Gao, Farong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Epilepsy is a chronic neurological disorder which can affect 65 million patients worldwide. Recently, network based analyses have been of great help in the investigation of seizures. Now graph theory is commonly applied to analyze functional brain networks, but functional brain networks are dynamic. Methods based on graph theory find it difficult to reflect the dynamic changes of functional brain network. In this paper, an approach to extracting features from brain functional networks is presented. Dynamic functional brain networks can be obtained by stacking multiple functional brain networks on the time axis. Then, a tensor decomposition method is used to extract features, and an ELM classifier is introduced to complete epilepsy prediction. In the prediction of epilepsy, the accuracy and F1 score of the feature extracted by tensor decomposition are higher than the degree and clustering coefficient. The features extracted from the dynamic functional brain network by tensor decomposition show better and more comprehensive performance than degree and clustering coefficient in epilepsy prediction.
ISSN:2076-3425
2076-3425
DOI:10.3390/brainsci11081066