THE BREUIL–MÉZARD CONJECTURE FOR POTENTIALLY BARSOTTI–TATE REPRESENTATIONS

We prove the Breuil–Mézard conjecture for two-dimensional potentially Barsotti–Tate representations of the absolute Galois group $G_{K}$, $K$ a finite extension of $\mathbb{Q}_{p}$, for any $p>2$ (up to the question of determining precise values for the multiplicities that occur). In the case tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum of mathematics. Pi 2014, Vol.2, Article e1
Hauptverfasser: GEE, TOBY, KISIN, MARK
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the Breuil–Mézard conjecture for two-dimensional potentially Barsotti–Tate representations of the absolute Galois group $G_{K}$, $K$ a finite extension of $\mathbb{Q}_{p}$, for any $p>2$ (up to the question of determining precise values for the multiplicities that occur). In the case that $K/\mathbb{Q}_{p}$ is unramified, we also determine most of the multiplicities. We then apply these results to the weight part of Serre’s conjecture, proving a variety of results including the Buzzard–Diamond–Jarvis conjecture.
ISSN:2050-5086
2050-5086
DOI:10.1017/fmp.2014.1