THE BREUIL–MÉZARD CONJECTURE FOR POTENTIALLY BARSOTTI–TATE REPRESENTATIONS
We prove the Breuil–Mézard conjecture for two-dimensional potentially Barsotti–Tate representations of the absolute Galois group $G_{K}$, $K$ a finite extension of $\mathbb{Q}_{p}$, for any $p>2$ (up to the question of determining precise values for the multiplicities that occur). In the case tha...
Gespeichert in:
Veröffentlicht in: | Forum of mathematics. Pi 2014, Vol.2, Article e1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the Breuil–Mézard conjecture for two-dimensional potentially
Barsotti–Tate representations of the absolute Galois group $G_{K}$, $K$ a finite extension of $\mathbb{Q}_{p}$, for any $p>2$ (up to the question of determining precise values
for the multiplicities that occur). In the case that $K/\mathbb{Q}_{p}$ is unramified, we also determine most of the
multiplicities. We then apply these results to the weight part of Serre’s
conjecture, proving a variety of results including the
Buzzard–Diamond–Jarvis conjecture. |
---|---|
ISSN: | 2050-5086 2050-5086 |
DOI: | 10.1017/fmp.2014.1 |