Diffusion times and stability exponents for nearly integrable analytic systems
For a positive integer n and R>0, we set $$B_R^n = \left\{ {x \in \mathbb{R}^n |\left\| x \right\|_\infty< R} \right\}$$ . Given R>1 and n≥4 we construct a sequence of analytic perturbations (H j) of the completely integrable Hamiltonian $$h\left( r \right) = \tfrac{1}{2}r_1^2 + ...\tfrac{1...
Gespeichert in:
Veröffentlicht in: | Open mathematics (Warsaw, Poland) Poland), 2005-09, Vol.3 (3), p.342-397 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a positive integer n and R>0, we set
$$B_R^n = \left\{ {x \in \mathbb{R}^n |\left\| x \right\|_\infty< R} \right\}$$
. Given R>1 and n≥4 we construct a sequence of analytic perturbations (H
j) of the completely integrable Hamiltonian
$$h\left( r \right) = \tfrac{1}{2}r_1^2 + ...\tfrac{1}{2}r_{n - 1}^2 + r_n $$
on
$$\mathbb{T}^n \times B_R^n $$
, with unstable orbits for which we can estimate the time of drift in the action space. These functions H
j are analytic on a fixed complex neighborhood V of
$$\mathbb{T}^n \times B_R^n $$
, and setting
$$\varepsilon _j : = \left\| {h - H_j } \right\|_{C^0 (V)} $$
the time of drift of these orbits is smaller than (C(1/ɛ
j)1/2(n-3)) for a fixed constant c>0. Our unstable orbits stay close to a doubly resonant surface, the result is therefore almost optimal since the stability exponent for such orbits is 1/2(n−2). An analogous result for Hamiltonian diffeomorphisms is also proved. Two main ingredients are used in order to deal with the analytic setting: a version of Sternberg's conjugacy theorem in a neighborhood of a normally hyperbolic manifold in a symplectic system, for which we give a complete (and seemingly new) proof; and Easton windowing method that allow us to approximately localize the wandering orbits and estimate their speed of drift. |
---|---|
ISSN: | 2391-5455 2391-5455 |
DOI: | 10.2478/BF02475913 |