Investigating BioCaRGOS, a Sol–Gel Matrix for the Stability of Heme Proteins under Enzymatic Degradation and Low pH
There have been significant advances in the development of vaccines for the prevention of various infectious diseases in the last few decades. These vaccines are mainly composed of proteins and nucleic acids. Poor handling and storage, exposure to high temperatures that lead to enzymatic degradation...
Gespeichert in:
Veröffentlicht in: | ACS omega 2023-09, Vol.8 (35), p.32053-32059 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There have been significant advances in the development of vaccines for the prevention of various infectious diseases in the last few decades. These vaccines are mainly composed of proteins and nucleic acids. Poor handling and storage, exposure to high temperatures that lead to enzymatic degradation, pH variation, and various other stresses can denature the proteins or nucleic acids present in any vaccine formulation. Therefore, it is necessary to maintain a proper environment to preserve the integrity of biospecimens. To overcome these challenges, we report a practical and user-friendly approach for sol–gels called “BioCaRGOS” that can stabilize heme proteins not only in the presence of degrading enzymes and acidic pH but simultaneously maintain stability at room temperature. Heme proteins, such as myoglobin and cytochrome c, have been used for this study. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.3c04012 |