Applying machine learning technologies to explore students' learning features and performance prediction

To understand students' learning behaviors, this study uses machine learning technologies to analyze the data of interactive learning environments, and then predicts students' learning outcomes. This study adopted a variety of machine learning classification methods, quizzes, and programmi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in neuroscience 2022-12, Vol.16, p.1018005-1018005
Hauptverfasser: Su, Yu-Sheng, Lin, Yu-Da, Liu, Tai-Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To understand students' learning behaviors, this study uses machine learning technologies to analyze the data of interactive learning environments, and then predicts students' learning outcomes. This study adopted a variety of machine learning classification methods, quizzes, and programming system logs, found that students' learning characteristics were correlated with their learning performance when they encountered similar programming practice. In this study, we used random forest (RF), support vector machine (SVM), logistic regression (LR), and neural network (NN) algorithms to predict whether students would submit on time for the course. Among them, the NN algorithm showed the best prediction results. Education-related data can be predicted by machine learning techniques, and different machine learning models with different hyperparameters can be used to obtain better results.
ISSN:1662-4548
1662-453X
1662-453X
DOI:10.3389/fnins.2022.1018005