Accurate Fetal QRS-Complex Classification from Abdominal Electrocardiogram Using Deep Learning

Fetal heart monitoring during pregnancy plays a critical role in diagnosing congenital heart disease (CHD). A noninvasive fetal electrocardiogram (fECG) provides additional clinical information for fetal heart monitoring. To date, the analysis of noninvasive fECG is challenging due to the cancellati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computational intelligence systems 2023-09, Vol.16 (1), p.1-10, Article 158
Hauptverfasser: Darmawahyuni, Annisa, Tutuko, Bambang, Nurmaini, Siti, Rachmatullah, Muhammad Naufal, Ardiansyah, Muhammad, Firdaus, Firdaus, Sapitri, Ade Iriani, Islami, Anggun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fetal heart monitoring during pregnancy plays a critical role in diagnosing congenital heart disease (CHD). A noninvasive fetal electrocardiogram (fECG) provides additional clinical information for fetal heart monitoring. To date, the analysis of noninvasive fECG is challenging due to the cancellation of maternal QRS-complexes, despite significant advances in electrocardiography. Fetal QRS-complex is highly considered to measure fetal heart rate to detect some fetal abnormalities such as arrhythmia. In this study, we proposed a deep learning (DL) framework that stacked a convolutional layer and bidirectional long short-term memory for fetal QRS-complexes classification. The fECG signals are first preprocessed using discrete wavelet transform (DWT) to remove the noise or inferences. The following step beats and QRS-complex segmentation. The last step is fetal QRS-complex classification based on DL. In the experiment of Physionet/Computing in Cardiology Challenge 2013, this study achieved 100% accuracy, sensitivity, specificity, precision, and F1-score. A stacked DL model demonstrates an effective tool for fetal QRS-complex classification and contributes to clinical applications for long-term maternal and fetal monitoring.
ISSN:1875-6883
1875-6883
DOI:10.1007/s44196-023-00339-x