A Time-Domain Asymptotic Approach to Predict Saddle-Node and Period Doubling Bifurcations in Pulse Width Modulated Piecewise Linear Systems
In this paper closed-form conditions for predicting the boundary of period-doubling (PD) bifurcation or saddle-node (SN) bifurcation in a class of PWM piecewise linear systems are obtained from a time-domain asymptotic approach. Examples of switched system considered in this study are switching dc-d...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper closed-form conditions for predicting the boundary of period-doubling (PD) bifurcation or saddle-node (SN) bifurcation in a class of PWM piecewise linear systems are obtained from a time-domain asymptotic approach. Examples of switched system considered in this study are switching dc-dc power electronics converters, temperature control systems and hydraulic valve control systems among others. These conditions are obtained from the steady-state discrete-time model using an asymptotic approach without resorting to frequency-domain Fourier analysis and without using the monodromy or the Jacobian matrix of the discrete-time model as it was recently reported in the existing literature on this topic. The availability of such design-oriented boundary expressions allows to understand the effect of the different parameters of the system upon its stability and its dynamical behavior. |
---|---|
ISSN: | 2261-236X 2261-236X |
DOI: | 10.1051/matecconf/20141608004 |