Review of high and ultrahigh performance cementitious composites incorporating various combinations of fibers and ultrafines

The outcomes of the research in modern cementitious composites have paved the way for their wide use in construction industry. The introduction of short, discontinuous and randomly distributed fibers to these composites has altered their inherent brittleness. Extensive research has been carried out...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of King Saud University. Engineering sciences 2017-10, Vol.29 (4), p.339-347
Hauptverfasser: Khan, M.I., Abbas, Y.M., Fares, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The outcomes of the research in modern cementitious composites have paved the way for their wide use in construction industry. The introduction of short, discontinuous and randomly distributed fibers to these composites has altered their inherent brittleness. Extensive research has been carried out on the effects of using of mono-fibers in a cementitious composite. However, limited reports in the approachable references on the use of hybrid fibers are available. The synergetic interaction between hybrid fibers have beneficial impact on cementitious composites. The incorporation of micro- and nano-pozzolanic materials, such as fly ash and silica fume have been used to develop high performance cementitious composites such as reactive powder concrete, DUCTAL and CEMTEC multiscale. Further developments were recently achieved by the development of ultra-high performance cementitious composites. The matter of developing high and ultrahigh cementitious composites using various kinds of fibers and particles has received enormous attention from the scientific community. This paper presents a comprehensive critical literature review on the area of high and ultra-high performance cement-based materials.
ISSN:1018-3639
1018-3639
DOI:10.1016/j.jksues.2017.03.006