Linear Quantile Mixed Models: The lqmm Package for Laplace Quantile Regression

Inference in quantile analysis has received considerable attention in the recent years. Linear quantile mixed models (Geraci and Bottai 2014) represent a ?exible statistical tool to analyze data from sampling designs such as multilevel, spatial, panel or longitudinal, which induce some form of clust...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical software 2014-05, Vol.57 (13), p.1-29
1. Verfasser: Geraci, Marco
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inference in quantile analysis has received considerable attention in the recent years. Linear quantile mixed models (Geraci and Bottai 2014) represent a ?exible statistical tool to analyze data from sampling designs such as multilevel, spatial, panel or longitudinal, which induce some form of clustering. In this paper, I will show how to estimate conditional quantile functions with random e?ects using the R package lqmm. Modeling, estimation and inference are discussed in detail using a real data example. A thorough description of the optimization algorithms is also provided.
ISSN:1548-7660
1548-7660
DOI:10.18637/jss.v057.i13