Highly Efficient Catalytic Reduction of Nitrobenzene Using Cu@C Based on a Novel Cu–MOF Precursor
Currently, the catalytic reduction of nitrobenzene requires more efficient and low-cost catalysts. In this work, a new copper-based metal-organic framework (MOF) was designed by the calcination of Cu–MOF at 700 °C (denoted as Cu@C). The catalyst showed superior catalytic performance toward the reduc...
Gespeichert in:
Veröffentlicht in: | Catalysts 2023-06, Vol.13 (6), p.956 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Currently, the catalytic reduction of nitrobenzene requires more efficient and low-cost catalysts. In this work, a new copper-based metal-organic framework (MOF) was designed by the calcination of Cu–MOF at 700 °C (denoted as Cu@C). The catalyst showed superior catalytic performance toward the reduction of nitrobenzene, using sodium borohydride (NaBH4) as the reducing agent, and the catalyst exhibited high nitrobenzene conversion (100%) and a quick reaction time (8 min). This was one of the highest efficiencies among non-noble metal catalysts reported so far, as general non-noble metal catalysts typically require more than 15 min. This catalyst had excellent acid resistance after etching using sulfuric acid (H2SO4) for 24 h with a nitrobenzene conversion rate that was still more than 90%. In addition, it could be used more than five times and the catalytic properties remained essentially unchanged, without any reactivation treatment. Therefore, this study could offer a new efficient non-noble metal catalyst for the reduction of nitro compounds. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal13060956 |