An Exploration of the Antioxidative and Anti-Inflammatory Role of Lactiplantibacillus plantarum 106 via Improving Mitochondrial Function

In this present study, bioinformatics analysis and the experimental validation method were used to systematically explore the antioxidant activity and anti-inflammatory effect of A106, which was isolated from traditional Chinese pickles, on lipopolysaccharide (LPS)-induced RAW264.7 macrophages. A106...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foods 2024-06, Vol.13 (13), p.1981
Hauptverfasser: Qin, Mengchun, Xing, Yinfei, Sun, Maocheng, Ma, Lin, Li, Xiaolei, Ma, Fumin, Li, Dan, Duan, Cuicui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this present study, bioinformatics analysis and the experimental validation method were used to systematically explore the antioxidant activity and anti-inflammatory effect of A106, which was isolated from traditional Chinese pickles, on lipopolysaccharide (LPS)-induced RAW264.7 macrophages. A106 had a good scavenging ability for DPPH, ABTS, and hydroxyl radicals. Furthermore, A106 could increase the activity of RAW264.7 macrophages; raise the SOD and GSH levels, with or without LPS sensitization; or decrease the MDA, TNF-α, and IL-6 levels. In order to deeply seek the antioxidant and anti-inflammatory role and mechanism, bioinformatic analysis, including GO, KEGG, and GSEA analysis, was used to conduct an in-depth analysis, and the results showed that the LPS treatment of RAW264.7 macrophages significantly upregulated inflammatory-related genes and revealed an enrichment in the inflammatory signaling pathways. Additionally, a network analysis via the Cytoscape software (version 3.9.1) identified key central genes and found that LPS also disturbed apoptosis and mitochondrial function. Based on the above bioinformatics analysis, the effects of A106 on inflammation-related gene expression, mitochondrial function, apoptosis, etc., were detected. The results indicated that A106 restored the declined expression levels of crucial genes like TNF-α and IL-6; mitochondrial membrane potential; and apoptosis and the expression of apoptosis-related genes, Bcl-2, Caspase-3, and Bax. These results suggest that A106 exerts antioxidant activity and anti-inflammatory effects through regulating inflammatory and apoptosis-related gene expression, restoring the mitochondrial membrane potential.
ISSN:2304-8158
2304-8158
DOI:10.3390/foods13131981