An Adaptive Fusion Attitude and Heading Measurement Method of MEMS/GNSS Based on Covariance Matching

Aimed at the problem of filter divergence caused by unknown noise statistical characteristics or variable noise characteristics in an MEMS/GNSS integrated navigation system in a dynamic environment, on the basis of revealing the parameter adjustment logic of covariance matching adaptive technology,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2022-10, Vol.13 (10), p.1787
Hauptverfasser: Sun, Wei, Sun, Peilun, Wu, Jiaji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aimed at the problem of filter divergence caused by unknown noise statistical characteristics or variable noise characteristics in an MEMS/GNSS integrated navigation system in a dynamic environment, on the basis of revealing the parameter adjustment logic of covariance matching adaptive technology, a fusion adaptive filtering scheme combining innovation-based adaptive estimation (IAE) and the adaptive fading Kalman filter (AFKF) is proposed. By setting two system tuning parameters, for the process noise covariance adaptation loop and the measurement noise covariance adaptation loop, covariance matching is sped up and achieves an effective suppression of filter divergence. The vehicle-mounted experimental results show that the mean square error of the combined attitude error obtained based on the fusion filtering method proposed in this paper is better than 0.5°, and the mean square error of the heading error is better than 1.5°. The results can provide technical support for the continuous extraction of low-cost attitude information from mobile platforms.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi13101787