Parametrization consequences of constraining soil organic matter models by total carbon and radiocarbon using long-term field data
Soil organic carbon (SOC) dynamics result from different interacting processes and controls on spatial scales from sub-aggregate to pedon to the whole ecosystem. These complex dynamics are translated into models as abundant degrees of freedom. This high number of not directly measurable variables an...
Gespeichert in:
Veröffentlicht in: | Biogeosciences 2016-05, Vol.13 (10), p.3003-3019 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Soil organic carbon (SOC) dynamics result from different interacting processes and controls on spatial scales from sub-aggregate to pedon to the whole ecosystem. These complex dynamics are translated into models as abundant degrees of freedom. This high number of not directly measurable variables and, on the other hand, very limited data at disposal result in equifinality and parameter uncertainty. Carbon radioisotope measurements are a proxy for SOC age both at annual to decadal (bomb peak based) and centennial to millennial timescales (radio decay based), and thus can be used in addition to total organic C for constraining SOC models. By considering this additional information, uncertainties in model structure and parameters may be reduced. To test this hypothesis we studied SOC dynamics and their defining kinetic parameters in the Zürich Organic Fertilization Experiment (ZOFE) experiment, a > 60-year-old controlled cropland experiment in Switzerland, by utilizing SOC and SO14C time series. To represent different processes we applied five model structures, all stemming from a simple mother model (Introductory Carbon Balance Model – ICBM): (I) two decomposing pools, (II) an inert pool added, (III) three decomposing pools, (IV) two decomposing pools with a substrate control feedback on decomposition, (V) as IV but with also an inert pool. These structures were extended to explicitly represent total SOC and 14C pools. The use of different model structures allowed us to explore model structural uncertainty and the impact of 14C on kinetic parameters. We considered parameter uncertainty by calibrating in a formal Bayesian framework. By varying the relative importance of total SOC and SO14C data in the calibration, we could quantify the effect of the information from these two data streams on estimated model parameters. The weighing of the two data streams was crucial for determining model outcomes, and we suggest including it in future modeling efforts whenever SO14C data are available. The measurements and all model structures indicated a dramatic decline in SOC in the ZOFE experiment after an initial land use change in 1949 from grass- to cropland, followed by a constant but smaller decline. According to all structures, the three treatments (control, mineral fertilizer, farmyard manure) we considered were still far from equilibrium. The estimates of mean residence time (MRT) of the C pools defined by our models were sensitive to the consideration of the SO1 |
---|---|
ISSN: | 1726-4189 1726-4170 1726-4189 |
DOI: | 10.5194/bg-13-3003-2016 |