Impacts of climate variability on wetland salinization in the North American prairies

The glaciated plains of the North American continent, also known as the "prairies", are a complex hydrological system characterized by hummocky terrain, where wetlands, containing seasonal or semi-permanent ponds, occupy the numerous topographic depressions. The prairie subsoil and many of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrology and earth system sciences 2014-04, Vol.18 (4), p.1251-1263
Hauptverfasser: Nachshon, U, Ireson, A, van der Kamp, G, Davies, S. R, Wheater, H. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The glaciated plains of the North American continent, also known as the "prairies", are a complex hydrological system characterized by hummocky terrain, where wetlands, containing seasonal or semi-permanent ponds, occupy the numerous topographic depressions. The prairie subsoil and many of its water bodies contain high salt concentrations, in particular sulfate salts, which are continuously cycled within the closed drainage basins. The period between 2000 and 2012 was characterized by an unusual degree of climatic variability, including severe floods and droughts, and this had a marked effect on the spatial distribution, water levels and chemical composition of wetland ponds. Understanding the geochemical and hydrological processes under changing environmental conditions is needed in order to better understand the risk and mitigate the impacts of future soil and water salinization. Here we explore salt dynamics in the prairies using field observations from St. Denis, Saskatchewan, taken mostly over the last 20 years. Measurements include meteorological data, soil moisture, soil salinity, groundwater levels and pond water volume, salinity, and chemical composition. The record includes periods of exceptional snow (1997, 2007) and periods of exception rainfall (2010, 2012), both of which resulted in unusually high pond water levels. Measurements indicated that severe pond salinization only occurred in response to extreme summer rainfall. It is hypothesized that since rainfall water infiltrates through the soil towards the depressions, while snowmelt water flows mainly as surface water over frozen soils, they have markedly different impacts on salt transport and pond salinization. Whilst this hypothesis is consistent with our conceptual understanding of the system, it needs to be tested further at a range of field sites in the prairies.
ISSN:1607-7938
1027-5606
1607-7938
DOI:10.5194/hess-18-1251-2014