Punch Trackers: Correct Recognition Depends on Punch Type and Training Experience
To determine the ability of different punch trackers (PT) (Corner (CPT), Everlast (EPT), and Hykso (HPT)) to recognize specific punch types (lead and rear straight punches, lead and rear hooks, and lead and rear uppercuts) thrown by trained (TR, n = 10) and untrained punchers (UNTR, n = 11), subject...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2021-04, Vol.21 (9), p.2968 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To determine the ability of different punch trackers (PT) (Corner (CPT), Everlast (EPT), and Hykso (HPT)) to recognize specific punch types (lead and rear straight punches, lead and rear hooks, and lead and rear uppercuts) thrown by trained (TR, n = 10) and untrained punchers (UNTR, n = 11), subjects performed different punch combinations, and PT data were compared to data from video recordings to determine how well each PT recognized the punches that were actually thrown. Descriptive statistics and multilevel modelling were used to analyze the data. The CPT, EPT and HPT detected punches more accurately in TR than UNTR, evidenced by a lower percentage error in TR (
= 0.007). The CPT, EPT, and HPT detected straight punches better than uppercuts and hooks, with a lower percentage error for straight punches (
< 0.001). The recognition of punches with CPT and HPT depended on punch order, with earlier punches in a sequence recognized better. The same may or may not have occurred with EPT, but EPT does not allow for data to be exported, meaning the order of individual punches could not be analyzed. The CPT and HPT both seem to be viable options for tracking punch count and punch type in TR and UNTR. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s21092968 |