Interpreting pathways to discover cancer driver genes with Moonlight

Cancer driver gene alterations influence cancer development, occurring in oncogenes, tumor suppressors, and dual role genes. Discovering dual role cancer genes is difficult because of their elusive context-dependent behavior. We define oncogenic mediators as genes controlling biological processes. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-01, Vol.11 (1), p.69-17, Article 69
Hauptverfasser: Colaprico, Antonio, Olsen, Catharina, Bailey, Matthew H., Odom, Gabriel J., Terkelsen, Thilde, Silva, Tiago C., Olsen, André V., Cantini, Laura, Zinovyev, Andrei, Barillot, Emmanuel, Noushmehr, Houtan, Bertoli, Gloria, Castiglioni, Isabella, Cava, Claudia, Bontempi, Gianluca, Chen, Xi Steven, Papaleo, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cancer driver gene alterations influence cancer development, occurring in oncogenes, tumor suppressors, and dual role genes. Discovering dual role cancer genes is difficult because of their elusive context-dependent behavior. We define oncogenic mediators as genes controlling biological processes. With them, we classify cancer driver genes, unveiling their roles in cancer mechanisms. To this end, we present Moonlight, a tool that incorporates multiple -omics data to identify critical cancer driver genes. With Moonlight, we analyze 8000+ tumor samples from 18 cancer types, discovering 3310 oncogenic mediators, 151 having dual roles. By incorporating additional data (amplification, mutation, DNA methylation, chromatin accessibility), we reveal 1000+ cancer driver genes, corroborating known molecular mechanisms. Additionally, we confirm critical cancer driver genes by analysing cell-line datasets. We discover inactivation of tumor suppressors in intron regions and that tissue type and subtype indicate dual role status. These findings help explain tumor heterogeneity and could guide therapeutic decisions. Identification of cancer driver genes, especially those that can act as tumour suppressors or oncogenes depending on context, remains a challenge. Here, the authors introduce Moonlight, a tool that integrates multi-omic data to address this challenge and identify numerous dual-role cancer genes.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-13803-0