Projective complex matrix factorization for facial expression recognition

In this paper, a dimensionality reduction method applied on facial expression recognition is investigated. An unsupervised learning framework, projective complex matrix factorization (proCMF), is introduced to project high-dimensional input facial images into a lower dimension subspace. The proCMF m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURASIP journal on advances in signal processing 2018-02, Vol.2018 (1), p.1-11, Article 10
Hauptverfasser: Duong, Viet-Hang, Lee, Yuan-Shan, Ding, Jian-Jiun, Pham, Bach-Tung, Bui, Manh-Quan, Bao, Pham The, Wang, Jia-Ching
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a dimensionality reduction method applied on facial expression recognition is investigated. An unsupervised learning framework, projective complex matrix factorization (proCMF), is introduced to project high-dimensional input facial images into a lower dimension subspace. The proCMF model is related to both the conventional projective nonnegative matrix factorization (proNMF) and the cosine dissimilarity metric in the simple manner by transforming real data into the complex domain. A projective matrix is then found through solving an unconstraint complex optimization problem. The gradient descent method was utilized to optimize a complex cost function. Extensive experiments carried on the extended Cohn-Kanade and the JAFFE databases show that the proposed proCMF model provides even better performance than state-of-the-art methods for facial expression recognition.
ISSN:1687-6180
1687-6180
DOI:10.1186/s13634-017-0521-9