Quantitative phenotyping and evaluation for lettuce leaves of multiple semantic components

Classification and phenotype identification of lettuce leaves urgently require fine quantification of their multi-semantic traits. Different components of lettuce leaves undertake specific physiological functions and can be quantitatively described and interpreted using their observable properties....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant methods 2022-04, Vol.18 (1), p.54-54, Article 54
Hauptverfasser: Du, Jianjun, Li, Bo, Lu, Xianju, Yang, Xiaozeng, Guo, Xinyu, Zhao, Chunjiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Classification and phenotype identification of lettuce leaves urgently require fine quantification of their multi-semantic traits. Different components of lettuce leaves undertake specific physiological functions and can be quantitatively described and interpreted using their observable properties. In particular, petiole and veins determine mechanical support and material transport performance of leaves, while other components may be closely related to photosynthesis. Currently, lettuce leaf phenotyping does not accurately differentiate leaf components, and there is no comparative evaluation for positive-back of the same lettuce leaf. In addition, a few traits of leaf components can be measured manually, but it is time-consuming, laborious, and inaccurate. Although several studies have been on image-based phenotyping of leaves, there is still a lack of robust methods to extract and validate multi-semantic traits of large-scale lettuce leaves automatically. In this study, we developed an automated phenotyping pipeline to recognize the components of detached lettuce leaves and calculate multi-semantic traits for phenotype identification. Six semantic segmentation models were constructed to extract leaf components from visible images of lettuce leaves. And then, the leaf normalization technique was used to rotate and scale different leaf sizes to the "size-free" space for consistent leaf phenotyping. A novel lamina-based approach was also utilized to determine the petiole, first-order vein, and second-order veins. The proposed pipeline contributed 30 geometry-, 20 venation-, and 216 color-based traits to characterize each lettuce leaf. Eleven manually measured traits were evaluated and demonstrated high correlations with computation results. Further, positive-back images of leaves were used to verify the accuracy of the proposed method and evaluate the trait differences. The proposed method lays an effective strategy for quantitative analysis of detached lettuce leaves' fine structure and components. Geometry, color, and vein traits of lettuce leaf and its components can be comprehensively utilized for phenotype identification and breeding of lettuce. This study provides valuable perspectives for developing automated high-throughput phenotyping application of lettuce leaves and the improvement of agronomic traits such as effective photosynthetic area and vein configuration.
ISSN:1746-4811
1746-4811
DOI:10.1186/s13007-022-00890-2