Investigating the Electronic Portal Imaging Device for Small Radiation Field Measurements

With the advent of state-of-the-art treatment technologies, the use of small fields has increased, and dosimetry in small fields is highly challenging. In this study, the potential use of Varian electronic portal imaging device (EPID) for small field measurements was explored for 6 and 15 MV photon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical physics 2017-04, Vol.42 (2), p.59-64
Hauptverfasser: Agarwal, Arpita, Rastogi, Nikhil, Maria Das, K J, Yoganathan, S A, Udayakumar, D, Kumar, Shaleen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the advent of state-of-the-art treatment technologies, the use of small fields has increased, and dosimetry in small fields is highly challenging. In this study, the potential use of Varian electronic portal imaging device (EPID) for small field measurements was explored for 6 and 15 MV photon beams. The output factors and profiles were measured for a range of jaw-collimated square field sizes starting from 0.8 cm × 0.8 cm to 10 cm × 10 cm using EPID. For evaluation purpose, reference data were acquired using Exradin A16 microionization chamber (0.007 cc) for output factors and stereotactic field diode for profile measurements in a radiation field analyzer. The output factors of EPID were in agreement with the reference data for field sizes down to 2 cm × 2 cm and for 2 cm × 2 cm; the difference in output factors was +2.06% for 6 MV and +1.56% for 15 MV. For the lowest field size studied (0.8 cm × 0.8 cm), the differences were maximum; +16% for 6 MV and +23% for 15 MV photon beam. EPID profiles of both energies were closely matching with reference profiles for field sizes down to 2 cm × 2 cm; however, penumbra and measured field size of EPID profiles were slightly lower compared to its counterpart. EPID is a viable option for profile and output factor measurements for field sizes down to 2 cm × 2 cm in the absence of appropriate small field dosimeters.
ISSN:0971-6203
1998-3913
DOI:10.4103/jmp.JMP_131_16