Comparative Study between the CRISPR/Cpf1 (Cas12a) and CRISPR/Cas9 Systems for Multiplex Gene Editing in Maize
Although the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has been proved to be an efficient multiplex gene editing system in maize, it was still unclear how CRISPR/Cpf1 (Cas12a) system would perform for multiplex gene editing in maize....
Gespeichert in:
Veröffentlicht in: | Agriculture (Basel) 2021-05, Vol.11 (5), p.429 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has been proved to be an efficient multiplex gene editing system in maize, it was still unclear how CRISPR/Cpf1 (Cas12a) system would perform for multiplex gene editing in maize. To this end, this study compared the CRISPR/Cpf1 system and CRISPR/Cas9 system for multiplex gene editing in maize. The bZIP transcription factor Opaque2 (O2) was used as the target gene in both systems. We found that in the T0 and T1 generations, the CRISPR/Cpf1 system showed lower editing efficiency than the CRISPR/Cas9 system. However, in the T2 generation, the CRISPR/Cpf1 system generated more types of new mutations. While the CRISPR/Cas9 system tended to edit within the on-target range, the CRISPR/Cpf1 system preferred to edit in between the targets. We also found that in the CRISPR/Cpf1 system, the editing efficiency positively correlated with the expression level of Cpf1. In conclusion, the CRISPR/Cpf1 system offers alternative choices for target-site selection for multiplex gene editing and has acceptable editing efficiency in maize and is a valuable alternative choice for gene editing in crops. |
---|---|
ISSN: | 2077-0472 2077-0472 |
DOI: | 10.3390/agriculture11050429 |