Modeling and analysis of Hi-C data by HiSIF identifies characteristic promoter-distal loops

Current computational methods on Hi-C analysis focused on identifying Mb-size domains often failed to unveil the underlying functional and mechanistic relationship of chromatin structure and gene regulation. We developed a novel computational method HiSIF to identify genome-wide interacting loci. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome medicine 2020-08, Vol.12 (1), p.69-69, Article 69
Hauptverfasser: Zhou, Yufan, Cheng, Xiaolong, Yang, Yini, Li, Tian, Li, Jingwei, Huang, Tim H-M, Wang, Junbai, Lin, Shili, Jin, Victor X
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current computational methods on Hi-C analysis focused on identifying Mb-size domains often failed to unveil the underlying functional and mechanistic relationship of chromatin structure and gene regulation. We developed a novel computational method HiSIF to identify genome-wide interacting loci. We illustrated HiSIF outperformed other tools for identifying chromatin loops. We applied it to Hi-C data in breast cancer cells and identified 21 genes with gained loops showing worse relapse-free survival in endocrine-treated patients, suggesting the genes with enhanced loops can be used for prognostic signatures for measuring the outcome of the endocrine treatment. HiSIF is available at https://github.com/yufanzhouonline/HiSIF .
ISSN:1756-994X
1756-994X
DOI:10.1186/s13073-020-00769-8