Modeling and analysis of Hi-C data by HiSIF identifies characteristic promoter-distal loops
Current computational methods on Hi-C analysis focused on identifying Mb-size domains often failed to unveil the underlying functional and mechanistic relationship of chromatin structure and gene regulation. We developed a novel computational method HiSIF to identify genome-wide interacting loci. We...
Gespeichert in:
Veröffentlicht in: | Genome medicine 2020-08, Vol.12 (1), p.69-69, Article 69 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Current computational methods on Hi-C analysis focused on identifying Mb-size domains often failed to unveil the underlying functional and mechanistic relationship of chromatin structure and gene regulation. We developed a novel computational method HiSIF to identify genome-wide interacting loci. We illustrated HiSIF outperformed other tools for identifying chromatin loops. We applied it to Hi-C data in breast cancer cells and identified 21 genes with gained loops showing worse relapse-free survival in endocrine-treated patients, suggesting the genes with enhanced loops can be used for prognostic signatures for measuring the outcome of the endocrine treatment. HiSIF is available at https://github.com/yufanzhouonline/HiSIF . |
---|---|
ISSN: | 1756-994X 1756-994X |
DOI: | 10.1186/s13073-020-00769-8 |