Optimal Layer Reinsurance for Compound Fractional Poisson Model

In this paper, we study the optimal retentions for an insurer with a compound fractional Poisson surplus and a layer reinsurance treaty. Under the criterion of maximizing the adjustment coefficient, the closed form expressions of the optimal results are obtained. It is demonstrated that the optimal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete dynamics in nature and society 2019-01, Vol.2019 (2019), p.1-8
1. Verfasser: Zhang, Jiesong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the optimal retentions for an insurer with a compound fractional Poisson surplus and a layer reinsurance treaty. Under the criterion of maximizing the adjustment coefficient, the closed form expressions of the optimal results are obtained. It is demonstrated that the optimal retention vector and the maximal adjustment coefficient are not only closely related to the parameter of the fractional Poisson process, but also dependent on the time and the claim intensity, which is different from the case in the classical compound Poisson process. Numerical examples are presented to show the impacts of the three parameters on the optimal results.
ISSN:1026-0226
1607-887X
DOI:10.1155/2019/2150878