On line bundles arising from the LCK structure over locally conformal Kähler solvmanifolds
We can construct a real line bundle arising from the locally conformal Kähler (LCK) structure over an LCK manifold. We study the properties of this line bundle over an LCK solvmanifold whose complex structure is left-invariant. Mainly, we prove that this line bundle over an LCK solvmanifold with lef...
Gespeichert in:
Veröffentlicht in: | Complex manifolds (Warsaw, Poland) Poland), 2024-05, Vol.11 (1), p.1-40 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We can construct a real line bundle arising from the locally conformal Kähler (LCK) structure over an LCK manifold. We study the properties of this line bundle over an LCK solvmanifold whose complex structure is left-invariant. Mainly, we prove that this line bundle
over an LCK solvmanifold
with left-invariant complex structure is flat and
has a global closed 2-form, which induces an Hermitian structure on the holomorphic tangent bundle twisted by the line bundle
if the Lee form is cohomologous to a left-invariant 1-form on |
---|---|
ISSN: | 2300-7443 2300-7443 |
DOI: | 10.1515/coma-2024-0003 |