On line bundles arising from the LCK structure over locally conformal Kähler solvmanifolds

We can construct a real line bundle arising from the locally conformal Kähler (LCK) structure over an LCK manifold. We study the properties of this line bundle over an LCK solvmanifold whose complex structure is left-invariant. Mainly, we prove that this line bundle over an LCK solvmanifold with lef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex manifolds (Warsaw, Poland) Poland), 2024-05, Vol.11 (1), p.1-40
1. Verfasser: Yamada, Takumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We can construct a real line bundle arising from the locally conformal Kähler (LCK) structure over an LCK manifold. We study the properties of this line bundle over an LCK solvmanifold whose complex structure is left-invariant. Mainly, we prove that this line bundle over an LCK solvmanifold with left-invariant complex structure is flat and has a global closed 2-form, which induces an Hermitian structure on the holomorphic tangent bundle twisted by the line bundle if the Lee form is cohomologous to a left-invariant 1-form on
ISSN:2300-7443
2300-7443
DOI:10.1515/coma-2024-0003