Design of an Integrated CSP-Calcium Looping for Uninterrupted Power Production Through Energy Storage

Solar driven large scale uninterrupted power production can be accomplished with a combination of Concentrated Solar Power (CSP) plant and a Thermochemical Energy Storage (TCES) based on a Calcium Looping (CaL) process. Thermal energy can be stored in the form of chemical energy due to calcination r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering transactions 2018-08, Vol.70
Hauptverfasser: Evgenios Karasavvas, Kyriakos D. Panopoulos, Simira Papadopoulou, Spyros Voutetakis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solar driven large scale uninterrupted power production can be accomplished with a combination of Concentrated Solar Power (CSP) plant and a Thermochemical Energy Storage (TCES) based on a Calcium Looping (CaL) process. Thermal energy can be stored in the form of chemical energy due to calcination reaction and released back as thermal energy during the carbonation reaction (CaO + CO2 ↔ CaCO3). This paper presents the preliminarily design, integration, and simulation of such process plant in AspenPlusTM by considering solar energy in the system. This includes indirect solar heated calcination by explicitly heating up CO2 at high temperatures at a concentrated solar heat exchanger (receiver), where CO2 is directly imported into the calciner not only to preheat solids, but to provide the appropriate energy for the highly endothermic calcination reaction. The global efficiency of the integrated system reaches 31.5 %. A parametric analysis is presented on the effects of key parameters, such as the carbonation pressure, the CO2 inlet temperature to calciner, and CaO storage temperature.
ISSN:2283-9216
DOI:10.3303/CET1870356