On the Chemical Composition and Possible Origin of Na–Cr-Rich Clinopyroxene in Silicocarbonatites from Samalpatti, Tamil Nadu, South India

Mineralogical and chemical data are presented for a suite of Na–Cr-rich clinopyroxenes associated with chromite, winchite (sodium-calcium amphibole), titanite and calcite in Mg-Cr-rich silicocarbonatites from the Samalpatti carbonatite complex, Tamil Nadu, South India. The Mg-Cr-rich silicocarbonati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals (Basel) 2018-08, Vol.8 (8), p.355
Hauptverfasser: Krátký, Ondřej, Rapprich, Vladislav, Racek, Martin, Míková, Jitka, Magna, Tomáš
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mineralogical and chemical data are presented for a suite of Na–Cr-rich clinopyroxenes associated with chromite, winchite (sodium-calcium amphibole), titanite and calcite in Mg-Cr-rich silicocarbonatites from the Samalpatti carbonatite complex, Tamil Nadu, South India. The Mg-Cr-rich silicocarbonatites occur as 10–30 cm large enclaves in pyroxenites. The chemical composition of the pyroxenes differs among individual enclaves, with variable proportions of diopside, kosmochlor and jadeite-aegirine end-members. These compositions fill a previously unoccupied space in the kosmochlor-diopside-jadeite+aegirine ternary plot, indicating a distinct origin of kosmochlor-rich pyroxene compared with previous findings from diverse settings. The Na–Cr-rich clinopyroxene has low ΣREE = 9.2 ppm, with slight enrichment in LREE (LaN = 7), coupled with low HREE (YbN = 0.6), and flat HREE, paralleled by a significant fractionation of Nb/Ta (2408) and Th/U (26.5). Sodic metasomatism (fenitization) associated with either carbonatite emplacement at shallow levels or during carbonatite ascent through the upper mantle most likely was the major process operating in the area. We suggest two scenarios of the formation of Na–Cr-rich pyroxene: (1) from mantle-derived chromian mineral phases (spinel and/or garnet) through fenitization, with subsequent corrosion by growing winchite due to volatile influx; (2) via metasomatic reaction of Cr-rich garnet in mantle peridotite due to reaction with Na-rich carbonatite melt. Collectively, the appearance of kosmochlor may play an important role in deconvolving metasomatic processes, and fenitization in particular. If combined with petrologic experiments, it could improve our understanding of the origin and subsequent history of chemical signatures of carbonate-rich materials in the mantle.
ISSN:2075-163X
2075-163X
DOI:10.3390/min8080355