PCGen: A Fully Parallelizable Point Cloud Generative Model

Generative models have the potential to revolutionize 3D extended reality. A primary obstacle is that augmented and virtual reality need real-time computing. Current state-of-the-art point cloud random generation methods are not fast enough for these applications. We introduce a vector-quantized var...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-02, Vol.24 (5), p.1414
Hauptverfasser: Vercheval, Nicolas, Royen, Remco, Munteanu, Adrian, Pižurica, Aleksandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Generative models have the potential to revolutionize 3D extended reality. A primary obstacle is that augmented and virtual reality need real-time computing. Current state-of-the-art point cloud random generation methods are not fast enough for these applications. We introduce a vector-quantized variational autoencoder model (VQVAE) that can synthesize high-quality point clouds in milliseconds. Unlike previous work in VQVAEs, our model offers a compact sample representation suitable for conditional generation and data exploration with potential applications in rapid prototyping. We achieve this result by combining architectural improvements with an innovative approach for probabilistic random generation. First, we rethink current parallel point cloud autoencoder structures, and we propose several solutions to improve robustness, efficiency and reconstruction quality. Notable contributions in the decoder architecture include an innovative computation layer to process the shape semantic information, an attention mechanism that helps the model focus on different areas and a filter to cover possible sampling errors. Secondly, we introduce a parallel sampling strategy for VQVAE models consisting of a double encoding system, where a variational autoencoder learns how to generate the complex discrete distribution of the VQVAE, not only allowing quick inference but also describing the shape with a few global variables. We compare the proposed decoder and our VQVAE model with established and concurrent work, and we prove, one by one, the validity of the single contributions.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24051414