Surface roughness and dimension accuracy data from hybrid manufacturing process using PLA material
This paper introduces a comprehensive dataset focusing on the surface roughness and dimensional accuracy of 3D printed specimens derived from a hybrid manufacturing process. The design of these specimens incorporates surfaces oriented at 0˚, 45˚, and 90˚ angles for surface roughness testing, along w...
Gespeichert in:
Veröffentlicht in: | Data in brief 2024-06, Vol.54, p.110477-110477, Article 110477 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces a comprehensive dataset focusing on the surface roughness and dimensional accuracy of 3D printed specimens derived from a hybrid manufacturing process. The design of these specimens incorporates surfaces oriented at 0˚, 45˚, and 90˚ angles for surface roughness testing, along with cylindrical, radial, and pocket areas to evaluate dimensional accuracy. Utilizing PLA material, the specimens undergo a printing phase followed by milling within the same machine, thereby enhancing both surface roughness and dimensional quality. Surface roughness data is gathered through a surface roughness tester, while dimensional accuracy is assessed using a digital vernier caliper. The dataset includes comparative analyses conducted before and after the hybrid manufacturing process, revealing notable improvements in both surface roughness and dimensional accuracy post-processing. These findings furnish valuable insights for researchers and engineers engaged in hybrid manufacturing processes involving PLA material, serving as a foundational resource for further investigations and advancements in the field. |
---|---|
ISSN: | 2352-3409 2352-3409 |
DOI: | 10.1016/j.dib.2024.110477 |