n$-factorization Property of Bilinear Mappings

In this paper, we define a new concept of factorization for a bounded bilinear mapping $f:X\times Y\to Z$, depended on  a natural number $n$ and a cardinal number $\kappa$; which is called $n$-factorization property of level $\kappa$. Then we study the relation between $n$-factorization property of ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sahand communications in mathematical analysis 2020-06, Vol.17 (3), p.161-173
1. Verfasser: Sedigheh Barootkoob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we define a new concept of factorization for a bounded bilinear mapping $f:X\times Y\to Z$, depended on  a natural number $n$ and a cardinal number $\kappa$; which is called $n$-factorization property of level $\kappa$. Then we study the relation between $n$-factorization property of  level $\kappa$ for $X^*$ with respect to $f$ and automatically boundedness and $w^*$-$w^*$-continuity and also strong Arens irregularity. These results may help us to prove some previous  problems related to strong Arens irregularity more easier than old. These include some results proved by Neufang in ~\cite{neu1} and ~\cite{neu}.  Some applications to certain bilinear mappings on convolution algebras, on a locally compact group, are also included. Finally, some solutions related to  the Ghahramani-Lau conjecture is raised.
ISSN:2322-5807
2423-3900
DOI:10.22130/scma.2019.116000.696