A Two-Stage Penalized Logistic Regression Approach to Case-Control Genome-Wide Association Studies

We propose a two-stage penalized logistic regression approach to case-control genome-wide association studies. This approach consists of a screening stage and a selection stage. In the screening stage, main-effect and interaction-effect features are screened by using L1-penalized logistic like-lihoo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Probability and Statistics 2012-01, Vol.2012 (2012), p.512-526
Hauptverfasser: Zhao, Jingyuan, Chen, Zehua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a two-stage penalized logistic regression approach to case-control genome-wide association studies. This approach consists of a screening stage and a selection stage. In the screening stage, main-effect and interaction-effect features are screened by using L1-penalized logistic like-lihoods. In the selection stage, the retained features are ranked by the logistic likelihood with the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li, 2001) and Jeffrey’s Prior penalty (Firth, 1993), a sequence of nested candidate models are formed, and the models are assessed by a family of extended Bayesian information criteria (J. Chen and Z. Chen, 2008). The proposed approach is applied to the analysis of the prostate cancer data of the Cancer Genetic Markers of Susceptibility (CGEMS) project in the National Cancer Institute, USA. Simulation studies are carried out to compare the approach with the pair-wise multiple testing approach (Marchini et al. 2005) and the LASSO-patternsearch algorithm (Shi et al. 2007).
ISSN:1687-952X
1687-9538
DOI:10.1155/2012/642403