Active Suspension Control Using an MPC-LQR-LPV Controller with Attraction Sets and Quadratic Stability Conditions
The control of an automotive suspension system by means of a hydraulic actuator is a complex nonlinear control problem. In this work, a linear parameter varying (LPV) model is proposed to reduce the complexity of the system while preserving the nonlinear behavior. In terms of control, a dual control...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2021-10, Vol.9 (20), p.2533 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The control of an automotive suspension system by means of a hydraulic actuator is a complex nonlinear control problem. In this work, a linear parameter varying (LPV) model is proposed to reduce the complexity of the system while preserving the nonlinear behavior. In terms of control, a dual controller consisting of a model predictive control (MPC) and a Linear Quadratic Regulator (LQR) is implemented. To ensure stability, quadratic stability conditions are imposed in terms of Linear Matrix Inequalities (LMI). Simulation results for quarter-car model over several disturbances are tested in both frequency and time domain to show the effectiveness of the proposed algorithm. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math9202533 |